1729: ένας «αριθμός ταξί» με βαθύτερη μαθηματική σημασία

The self-taught Indian mathematician Srinivasa Ramanujan (Ramanoutzan) (1887 - 1920), is one of the rarest cases genius in the history of mathematics.

Στις αρχές του 1913 ο καθηγητής του Πανεπιστημίου του Κέμπριτζ Gοdfrey H. Hardy (Χάρντι) (1877 – 1947) έλαβε μια επιστολή από το Μαντράς της Ινδίας. Ο Χάρντι την εποχή εκείνη εθεωρείτο ως ένας από τους καλύτερους ειδικούς στον απειροστικό λογισμό και τη θεωρία των αριθμών. Αποστολέας ήταν ο Srinivasa Ramanujan (Ραμανουτζάν), υπάλληλος στο λογιστήριο του ταχυδρομικού γραφείου του Μαντράς. Στην επιστολή του ανέφερε ότι δεν είχε αποφοιτήσει από κάποιο πανεπιστήμιο και ότι, αφότου τέλειωσε το σχολείο, είχε μελετήσει μόνος του μαθηματικά με το δικό του τρόπο χωρίς να ακολουθήσει το παραδοσιακό σύστημα.

Μια επιστολή τέτοιου είδους δεν θα είχε εντυπωσιάσει τον Χάρντι αν δεν περιείχε μια σειρά από μαθηματικούς τύπους που ο Ραμανουτζάν πρότεινε για δημοσίευση, εφόσον ο Χάρντι τους έβρισκε ενδιαφέροντες, δεδομένου ότι ο Ραμανουτζάν δεν είχε τα χρήματα που απαιτούνταν για την δημοσίευσή τους.

Hardy impressed and grappled - in collaboration with JE Littlewood (Litlgount) - the study and understanding of mathematical results contained in the letter. Several of these effects was new, and often seemed absolutely incomprehensible, at least in the "proof" that the reasoning supported. The proof in the strict sense (that was the largest contribution of ancient Greek mathematical science in how we do math today), was unknown to Ramanoutzan.

Οι «αποδείξεις» του ήταν απολύτως ιδιόμορφης φύσεως και στηρίζονταν κυρίως στη διαίσθησή του, που τον οδηγούσε πάντοτε σε μια σειρά «περίεργων» βημάτων στο πλαίσιο μιας εντελώς δικής του συλλογιστικής.

Srinivasa-Ramanujan

The Hardy Litlgount and immediately realized that the young Indian correspondent was a very interesting case of original genius. So Hardy organized and manipulated the invitation of Ramanoutzan at Trinity College Cambridge. After an initial, temporary refusal, the Ramanoutzan agreed to go to Cambridge, where he arrived in April 1914.

Εκεί, σύμφωνα με το πρόγραμμα που του είχε ετοιμάσει ο Χάρντι, o Ραμανουτζάν παρακολούθησε κάποιες διαλέξεις στην ανάλυση και στην άλγεβρα. Επιπλέον, αρκετά μαθηματικά του τα δίδαξε κατ’ ιδίαν ο Χάρντι στη διάρκεια των συναντήσεών τους. Γενναιόδωρος, όμως, και ειλικρινής, καθώς ήταν, παραδέχθηκε ότι «προφανώς εγώ διδάχθηκα περισσότερα από εκείνον απ΄όσα αυτός [ο Ραμανουτζάν] από εμένα».

Years of Cambridge were productive for Ramanoutzan, but did not last long. The climate in London, but also because of the difficulties 1th παγκοσμίου πολέμου, επιδείνωσαν την υγεία του Ραμανουτζάν, που έπασχε από φυματίωση και το 1917 εισήχθη σε νοσοκομείο του Λονδίνου.

Ο «αριθμός-ταξί» ή αριθμός «Hardy-Ramanujan»

During a visit to the hospital Hardy, wanting to cheer the Ramanoutzan said the taxi's registration number that carried him was ο αριθμός 1729: «πρόκειται μάλλον για έναν πληκτικό αριθμό κι ελπίζω να μην είναι κακός οιωνός» είπε ο Χάρντι.

«Όχι» απάντησε ο Ραμανουτζάν, «Δεν έχεις δίκιο, είναι ένας πολύ ενδιαφέρων αριθμός. Είναι ο smaller integer που μπορεί να εκφραστεί as a sum of two cubes in two different ways».

Ο Ραμανουτζάν ακολουθώντας ιατρική σύσταση, επέστρεψε στην Ινδία στις αρχές του 1919, και πέθανε εκεί τον Απρίλιο του 1920. Πέρασε τα τρία τελευταία χρόνια της ζωής του σε σανατόρια, με την υγεία του σε κακή κατάσταση. Παρ’ όλα αυτά, ήταν μόλις το 1918 που ανακάλυψε μερικά από τα πιο ωραία του θεωρήματα, την εποχή περίπου που εκλέχτηκε εταίρος της Βασιλικής Εταιρείας του Λονδίνου.

Την ιστορία με τον αριθμό της κυκλοφορίας του ταξί, που αποτελεί ένα ελάχιστο δείγμα της μαθηματικής ιδιοφυίας του Ραμανουτζάν, έφεραν ξανά στην επικαιρότητα οι μαθηματικοί Ken Ono και Sarah Trebat-Leder στην πρόσφατη δημοσίευσή τους με τίτλο «The 1729 K3 surface'.

Taxicab-number1Πράγματι, το 1729 είναι ο μικρότερος φυσικός αριθμός που μπορεί να γραφεί ως άθροισμα δυο θετικών κύβων, με δυο διαφορετικούς τρόπους:

= 1729 93 + 103 = 123 + 13

Πως το ήξερε αυτό ο Ραμανουτζάν; Δεν επρόκειτο για επιφοίτηση. Είχε ασχοληθεί στο παρελθόν με την διοφαντική εξίσωση Euler x3 + Y3 = Z3 + W3, Had met this numerical detail, recorded in his notebook and, thanks to its characteristic fluency with numbers, he remembered.

Οι Ken Ono και Sarah Trebat-Leder στην δημοσίευσή τους ανακοίνωσαν πως ο Ραμανουτζάν, πέρα από την αναπαράσταση του αριθμού 1729, μελετούσε elliptic curves and surfaces was discovered K3 - items today are very important in mathematics (number theory), but also in physics (string theory and quantum physics).

modular

Ο αριθμοί σαν τον 1729, που είναι μικρότερος ακέραιος που μπορεί να γραφεί σαν άθροισμα δυο κύβων με n διαφορετικούς τρόπους (n=2 στην περίπτωση του 1729), αναφέρονται ως αριθμοί «Hardy-Ramanujan» ή αριθμοί «taxi-cab». So far only 6 such numbers have been found.

Σε μια σελίδα του σημειωματάριου που κατέγραφε τις ιδέες του ο Ραμανουτζάν προς το τέλος της ζωής του (1919 -1920), εμφανίζεται ο αριθμός 1729 ως άθροισμα δυο κύβων με δυο διαφορετικούς τρόπους, συσχετισμένος με δεδομένα ελλειπτικών καμπυλών που χρησιμοποιούνται στην απόδειξη του τελευταίου θεωρήματος του Fermat. Ο Ken Ono μελετώντας τις σημειώσεις του Ραμανουτζάν συνειδητοποίησε ότι ο ιδιοφυής ινδός μαθηματικός είχε ανακαλύψει μια επιφάνεια Κ3, πολύ πριν αυτές ταυτοποιηθούν και ονομαστούν έτσι από τον André Weil, στη δεκαετία του 1950. (Κ3: προς τιμήν των τριών μεγάλων μαθηματικών Kummer, Kähler, Kodaira – και του K2, το δεύτερο ψηλότερο βουνό στη Γη μετά το όρος Έβερεστ που βρίσκεται στο Κασμίρ!). Όπως είναι εξαιρετικά δύσκολο να ανέβει κανείς στο βουνό Κ2, έτσι και η διαδικασία γενίκευσης των ελλειπτικών καμπυλών για να βρεθεί μια επιφάνεια Κ3 θεωρείται πολύ δύσκολο μαθηματικό πρόβλημα. Σύμφωνα με τους Ono και Trebat-Leder, ο Ραμανουτζάν χρησιμοποίησε τις ελλειπτικές καμπύλες (η αναπαράσταση του αριθμού 1729 σχετίζεται μ’ αυτές) για να καταλήξει σε μια επιφάνεια Κ3. Κι αυτό προκαλεί μεγάλη έκπληξη δεδομένου ότι οι μαθηματικοί ακόμα και σήμερα δυσκολεύονται να χειριστούν και να εκτελέσουν υπολογισμούς με επιφάνειες Κ3.

Ο θρύλος του Ραμανουτζάν είναι φυσικά γνωστός στην Ινδία, αλλά στις άλλες χώρες είναι γνωστός κυρίως μεταξύ των μαθηματικών. Ο υπόλοιπος κόσμος θα έχει την ευκαιρία να μάθει περισσότερα γι αυτόν μέσα από την ταινία «The Man Who Knew Infinity» που εξιστορεί την ζωή και το έργου του σπουδαίου Ινδού μαθηματικού. Υπενθυμίζεται ότι η ταινία άφησε πολύ καλές εντυπώσεις πριν από ένα μήνα στο Φεστιβάλ Κινηματογράφου του Τορόντο (διαβάστε σχετικά: First impressions from the film for Ramanoutzan).

number_1729

Πηγές
1. ΡΑΜΑΝΟΥΤΖΑΝ, Ο Ινδός Μαθηματικός, Robert Kanigel, εκδόσεις Τραυλός
2. Mathematicians find 'magic key' to drive Ramanujan's taxi-cab number
3. Περιοδικό QUANTUM, Μάιος/Ιούνιος 1998, ΤΟΜΟΣ 5/ ΤΕΥΧΟΣ 3
4. «THE 1729 K3 SURFACE»: http://arxiv.org/pdf/1510.00735v3.pdf

Source: physicsgg – Φυσικοί και Φυσική από το διαδίκτυο